From Scientific American:

The “it” in this case is spacetime, and the qubit (pronounced “cue-bit,” from “quantum bit”) represents the smallest possible amount of information—a computer “bit” on a quantum scale. The idea suggests the universe is built up from some underlying code, and that by cracking this code, physicists will finally have a way to understand the quantum nature of large-scale events in the cosmos. The most recent It from Qubit (IfQ) meeting was held in July at the Perimeter Institute for Theoretical Physics in Ontario, where organizers were expecting about 90 registrants. Instead, they got so many applications they had to expand to take 200 and simultaneously run five satellite sessions at other universities where scientists could participate remotely. “I think this is one of the most, if not the most, promising avenues of research toward pursuing quantum gravity,” says Netta Engelhardt, a postdoctoral researcher at Princeton University who is not officially involved in It from Qubit but who has attended some of its meetings. “It’s just taking off.”

Because the project involves both the science of quantum computers and the study of spacetime and general relativity, it brings together two groups of researchers who do not usually tend to collaborate: quantum information scientists on one hand and high-energy physicists and string theorists on the other. “It marries together two traditionally different fields: how information is stored in quantum things and how information is stored in space and time,” says Vijay Balasubramanian, a physicist at the University of Pennsylvania who is an IfQ principal investigator. About a year ago the Simons Foundation, a private organization that supports science and mathematics research, awarded a grant to found the It from Qubit collaboration and finance physicists to study and hold meetings on the subject. Since then excitement has grown and successive meetings …

Continue Reading