From Medical Xpress:

For the first time, Carnegie Mellon University BrainHub scientists have used a non-invasive brain-imaging tool to detect the pathways that connect the parts of the basal ganglia. Schematic of the major fiber pathways through the basal ganglia (A); visualization of the fibers shows their dorsolateral orientation (B,C). Credit: Carnegie Mellon University

Certain diseases, like Parkinson’s and Huntingdon’s disease, are associated with damage to the pathways between the brain’s basal ganglia regions. The basal ganglia sits at the base of the brain and is responsible for, among other things, coordinating movement. It is made up of four interconnected, deep brain structures that imaging techniques have previously been unable to visualize.

For the first time, Carnegie Mellon University BrainHub scientists have used a non-invasive brain-imaging tool to detect the pathways that connect the parts of the basal ganglia. Published in NeuroImage, the research provides a better understanding of this area’s circuitry, which could potentially lead to technologies to help track disease progression for Parkinson’s and Huntington’s disease and other neurological disorders.

“Clinically, it is difficult to see the pathways within the basal ganglia with neuroimaging techniques, like the ever popular MRI, because many of the fiber bundles that make up key parts of this circuit are very small and buried within dense cell bodies,” said Patrick Beukema, the lead author and a graduate student in the Center for Neuroscience at the University of Pittsburgh (CNUP) and the joint Pitt and CMU Center for the Basis of Neural Cognition (CNBC).

“For…

Continue Reading