From Medical Xpress:

When mice are engineered to lack the mGluR5 receptor in parvalbumin cells (right), they have fewer inhibitory (red) connections controlling the activity of excitatory neurons. Credit: Salk Institute

The loss of a critical receptor in a special class of inhibitory neurons in the brain may be responsible for neurodevelopmental disorders including autism and schizophrenia, according to new research by Salk scientists.

The importance of the receptor, called mGluR5, in other areas of the had been previously established. Until now, however, no one had studied their specific role in a cell type known as parvalbumin-positive interneurons, thought to be important in general cognition and generating certain types of oscillatory wave patterns in the brain.

“We found that without this receptor in the parvalbumin , mice have many serious behavioral deficits,” says Terrence Sejnowski, head of Salk’s Computational Neurobiology Laboratory, which led the research published in Molecular Psychiatry on August 11, 2015. “And a lot of them really mimic closely what we see in .”

Scientists had previously discovered that when molecular signaling was disrupted in these cells during development, the brain’s networks didn’t form correctly. Separate studies have revealed that mGluR5 receptors, which transmit glutamate signaling in the brain, are linked to addiction disorders, anxiety and Fragile X Syndrome. But, in these cases, mGluR5 is affected in excitatory cells, not like the parvalbumin-positive interneurons.

The Salk team wondered what the role of mGluR5 was in the parvalbumin cells since the cells were deemed so important in&

Continue Reading