From SOTT:

Solar heat could help generate both electricity and hydrogen fuel at the same time in a system that scientists in Switzerland and the United States call “hydricity.” Such a system could supply electricity round-the-clock with an overall efficiency better than many photovoltaic cells, researchers add.

There are two ways solar energy is used to generate electricity. Photovoltaic cells directly convert sunlight to electricity, while solar thermal power plants—also known as concentrating solar power systems—focus sunlight with mirrors, heating water and producing high-pressure steam that drives turbines.

Photovoltaic cells only absorb a portion of the solar spectrum, but they can generate electricity from both direct and diffuse sunlight. Solar thermal power plants can use more wavelengths of the solar spectrum, but they can only operate in direct sunlight, limiting them to sun-rich areas. Moreover, the highest conversion efficiencies reported yet for solar thermal power plants are significantly less than those for photovoltaic cells.

Scientists now suggest that coupling solar thermal power plants with hydrogen fuel production facilities could result in “hydricity” systems competitive with photovoltaic designs.

Today’s solar thermal power plants operate at temperatures of up to roughly 625 degrees C. However, the researchers noted that solar thermal power plants are more efficient at higher temperatures. What’s more, when they reach temperatures above 725 degrees C they can split water into it’s constituents, hydrogen and oxygen.

An integrated “hydricity” system would produce both steam for generating electricity and hydrogen for storing energy. And each makes the other more efficient. Set to produce hydrogen alone, its…

Continue Reading