From Medical Xpress:

The cerebellum from an animal early in the demyelinating phase of the late-onset disease. The green marks myelinated axons and the red highlights areas of inflammation and demyelination. Credit: Maria Traka

Multiple sclerosis (MS) may be triggered by the death of brain cells that make the insulation around nerve fibers, a surprising new view of the disease reported in a study from Northwestern Medicine and The University of Chicago. And a specially developed nanoparticle prevented MS even after the death of those brain cells, an experiment in the study showed.

The nanoparticles are being developed for clinical trials that could lead to new treatments—without the side effects of current therapies—in adults.

MS can be initiated when damage to the brain destroys the cells that make myelin, the scientists showed. Myelin is the insulating sheath around that enables nerve impulses to be transmitted. The death of these cells, oligodendrocytes, can activate the autoimmune response against myelin, which is the main feature of MS. Oligodendrocytes can possibly be destroyed by developmental abnormalities, viruses, bacterial toxins or environmental pollutants.

The scientists also developed the first of the progressive form of the autoimmune disease, which will enable the testing of new drugs against progressive MS. In the study, nanoparticles creating tolerance to the myelin antigen were administered and prevented progressive MS from developing.

The study will be published in Nature Neuroscience December 14.

The lead investigators are Stephen Miller, Judy Gugenheim Research Professor of Microbiology-Immunology at Northwestern University…

Continue Reading