From Science Daily:

Cast iron can be modified through the manufacturing process to optimize its mechanical and physical properties, such as strength and durability.

This makes it a material of choice for use in the transportation and machinery industries, which rely on cast iron’s resistance to wear, deformation, and rusting to design high-performance bridges, tools, and engine parts.

But the manufacturing process is as much art as science, producing good results yet not capturing cast iron’s full potential. Controversy still exists over the correlation between manufacturing casting parameters and desirable properties. Limited by typical industrial 2-D imaging techniques or time-consuming 3-D laboratory studies, researchers have been unable to pinpoint the exact processing parameters needed to elicit the ideal properties for each cast iron application.

Finding an easier way to peer deep inside the alloy to get a definitive answer could be a boon for consumers as well as give the U.S. industry a competitive advantage. According to a study released in the journal Scripta Materialia, high-energy synchrotron X-rays can provide that insight.

“By understanding the structure, it will be possible to develop alloys with improved mechanical and thermal properties. This implies that for applications, such as vehicle engine and engine components, one could use less material and reduce overall vehicle weight that would translate into fuel savings,” said Dileep Singh, Group Leader of Thermal-Mechanical Research at Argonne National Laboratory’s Center for Transportation Research and the technical lead of this study at Argonne.

For the transportation industry, the ability to modify manufacturing processes to…

Continue Reading